

Markscheme

May 2018

Physics

Standard level

Paper 3

https://xtremepape.rs/

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question		on	Answers	Notes	Total
1.	а		distance fallen = $654 - 12 = 642 \text{ wmm} $ absolute uncertainty = $2 + 0.1 \text{ wmm} \approx 2 \times 10^{-3} \text{ wm} $	Accept answers in mm or m	2
1.	b		$a = \frac{2s}{t^2} = \frac{2 \times 0.642}{0.363^2} = 9.744 \text{ mms}^{-2} \text{ s} \checkmark$ fractional uncertainty in distance = $\frac{2}{642}$ AND fractional uncertainty in time = $\frac{0.002}{0.363} \checkmark$ total fractional uncertainty = $\frac{\Delta s}{s} + 2\frac{\Delta t}{t} \approx 0.00311 + 2 \times 0.00551 \text{ s} \checkmark$ total absolute uncertainty = 0.1 or 0.14 AND same number of decimal places in value and uncertainty, <i>ie</i> : 9.7 ± 0.1 or 9.74 ± 0.14 ✓	Accept working in % for MP2 and MP3 Final uncertainty must be the absolute uncertainty	4

Q	uestic	on	Answers	Notes	Total
2.	a		combines the two equations to obtain result «for example $\frac{1}{I} = K^2 (C + x)^2 = \frac{4\pi}{P} (C + x)^2 \gg \checkmark$ <i>OR</i> reverse engineered solution – substitute $K = 2\sqrt{\frac{\pi}{P}}$ into $\frac{1}{I} = K^2 (C + x)^2$ to get $I = \frac{P}{4\pi (C + x)^2} \checkmark$	There are many ways to answer the question, look for a combination of two equations to obtain the third one	1
2.	b	i	extrapolating line to cross <i>x</i> -axis / use of <i>x</i> -intercept OR Use $C = \frac{y \text{-intercept}}{\text{gradient}}$ OR use of gradient and one point, correctly substituted in one of the formulae \checkmark accept answers between 3.0 and 4.5 «cm» \checkmark	Award [1 max] for negative answers	2

(Question 2 continued)

Question		on	Answers	Notes	Total
2.	b	ii	ALTERNATIVE 1		
			Evidence of finding gradient using two points <u>on the line</u> at least 10 cm apart \checkmark		
			Gradient found in range: 115–135 <i>or</i> 1.15–1.35 ✓		
			Using $P = \frac{4\pi}{\kappa^2}$ to get value between 6.9×10 ⁻⁴ and 9.5×10 ⁻⁴ «W»		
			and POT correct ✓		
			Correct unit, W and answer to 1, 2 or 3 significant figures ✓	Award [3 max] for an answer between 6.9W and 9.5W (POT penalized in 3rd marking point)	4
			ALTERNATIVE 2	Alternative 2 is worth [3 max]	
			Finds $I\left(\frac{1}{y^2}\right)$ from use of one point (<i>x</i> and <i>y</i>) on the line with		
			$x > 6$ cm and C from (b)(i) to use in $I = \frac{P}{4\pi (C + x)^2}$ or		
			$\frac{1}{\sqrt{I}} = Kx + KC \checkmark$		
			Correct re-arrangement to get <i>P</i> between 6.9×10^{-4} and		
			9.5×10 ⁻⁴ «W» and POT correct ✓		
			Correct unit, W and answer to 1, 2 or 3 significant figures 🗸		

(Question 2 continued)

Question		Answers	Notes	Total
2.	С	this graph will be a curve / not be a straight line \checkmark		
			OWTTE	
		more difficult to determine value of K		
		OR		2
		more difficult to determine value of C		
		OR		
		suitable mathematical argument \checkmark		

Section B

Option A — Relativity

Question		on	Answers	Notes	Total
3.	а	i	1.25c ✓		1
3.	а	ii	ALTERNATIVE 1		
			$u' = \frac{(0.50 + 0.75)}{1 + 0.5 \times 0.75} c \checkmark$		
			0.91 <i>c</i> ✓		
			ALTERNATIVE 2		2
			$u' = \frac{-0.50 - 0.75}{1 - (-0.5 \times 0.75)} c \checkmark$		
			-0.91 <i>c</i> ✓		
3.	b		nothing can travel faster than the speed of light (therefore (a)(ii) is the valid answer) \checkmark	OWTTE	1

G	uestion	Answers	Notes	Total
4.	a	0.60c OR $1.8 \times 10^8 \text{ sm s}^{-1} \text{ sm} \text{ sm}^{-1}$		1
4.	b	ALTERNATIVE 1 time interval in the Earth frame = $90 \times \gamma = 112.5$ minutes \checkmark «in Earth frame it takes 112.5 minutes for ship to reach station» so distance = $112.5 \times 60 \times 0.60c$ 1.2×10^{12} «m» ALTERNATIVE 2 Distance travelled according in the spaceship frame = $90 \times 60 \times 0.6c$ $= 9.72 \times 10^{11}$ «m» Distance in the Earth frame «= $9.72 \times 10^{11} \times 1.25$ » = 1.2×10^{12} «m»		3

Question		on	Answers	Notes	Total
4.	C		signal will take «112.5×0.60 =» 67.5 «minutes» to reach Earth «as it travels at <i>c</i> » OR signal will take $\left(\frac{1.2 \times 10^{12}}{3 \times 10^8}\right)$ =» 4000 « <i>s</i> » ✓ total time «= 67.5+112.5» = 180 minutes <i>or</i> 3.00 h or 3:00 am		2
4.	d	i	line from event E to A, upward and to left with A on <i>ct</i> axis (approx correct) ✓ line from event A to B, upward and to right with B on <i>ct</i> ' axis (approx correct) ✓ both lines drawn with ruler at 45 (judge by eye) ✓	eg:	3

(Question 4 continued)

Question Answers Notes	Total
Question Answers Notes 4. d ii ALTERNATIVE 1 «In spaceship frame» Finds the ratio $\frac{OB}{OE}$ (or by similar triangles on x or ct axes), value is approximately 4 \checkmark Hence time elapsed $\approx 4 \times 90$ mins ≈ 6 h «so clock time is $\approx 6:00 \times \checkmark$ Alternative 1: 4 4 4×90 mins ≈ 6 h «so clock time is $\approx 6:00 \times \checkmark$ 4 4×90 mins ≈ 6 h «so clock time is $\approx 6:00 \times \checkmark$ 4 4×90 mins ≈ 6 h «so clock time is $\approx 6:00 \times \checkmark$ 4 4×90 mins ≈ 6 h «so clock time is $\approx 6:00 \times \checkmark$ 4 4×90 mins ≈ 6 h «so clock time is $\approx 6:00 \times \checkmark$ 4 4×90 mins ≈ 6 h «so clock time is $\approx 6:00 \times \checkmark$ 4×90 mins ≈ 6 h «so clock time is $\approx 6:00 \times \checkmark$ 4×90 mins ≈ 6 h «so clock time is $\approx 6:00 \times \checkmark$ 4 4×90 mins ≈ 0 mi	2

(Question 4 continued)

Question		on	Answers	Notes	Total
5.	а		quantity that is the same/constant in all inertial frames \checkmark		1
5.	b	i	spacetime interval = $27^2 - 15^2 = 504 \text{ wm}^2 \text{ w}$		1
5.	b	ii	ALTERNATIVE 1 Evidence of $x' = 0 \checkmark$ $t' \ll = \frac{\sqrt{504}}{c} \approx 7.5 \times 10^{-8} \ll 3 \checkmark$ ALTERNATIVE 2 $\gamma = 1.2 \checkmark$		2
5.	c		$t' = \frac{9 \times 10^{-\circ}}{1.2} = 7.5 \times 10^{-8} \text{ ss}$ observer B measures the proper time and this is the shortest time measured <i>OR</i> time dilation occurs «for B's journey» according to A <i>OR</i> observer B is stationary relative to the particle, observer A is not $\frac{1}{2}$		1
			observer B is stationary relative to the particle, observer A is not \checkmark		

Option B — Engineering physics

Question		on	Answers	Notes	Total
6.	а	i	an object's resistance to change in rotational motion	OWTTE	
			OR		1
			equivalent of mass in rotational equations \checkmark		
6.	а	ii	$\Delta KE + \Delta rotational KE = \Delta GPE$		
			OR		
			$\frac{1}{2}mv^{2} + \frac{1}{2}I\frac{v^{2}}{r^{2}} = mgh \checkmark$		
			$\frac{1}{2} \times 0.250 \times v^{2} + \frac{1}{2} \times 1.3 \times 10^{-4} \times \frac{v^{2}}{1.44 \times 10^{-4}} = 0.250 \times 9.81 \times 0.36 \checkmark$		3
			$v = 1.2 \text{cm s}^{-1} \text{s}^{-1}$		
6.	а	iii	$\omega \ll = \frac{1.2}{0.012} \approx = 100 \ll \text{rad s}^{-1} \approx \checkmark$		1
6.	b	i	force in direction of motion ✓		
			so linear speed increases ✓		Z
6.	b	ii	force gives rise to anticlockwise/opposing torque on	OWTTE	
			wheel \checkmark so angular speed decreases \checkmark		2

Q	uesti	on	Answers	Notes	Total
7.	а		ALTERNATIVE 1		
			$\text{"Using } \frac{V_1}{T_1} = \frac{V_2}{T_2} \text{"}$		
			$V_2 = \frac{47.1 \times (273 + 19)}{(273 - 12)} \checkmark$		
			$V_2 = 52.7 \ll m^3 \gg \checkmark$		2
			ALTERNATIVE 2		
			«Using <i>PV</i> = <i>nRT</i> »		
			$V = \frac{243 \times 8.31 \times (273 + 19)}{11.2 \times 10^3} \checkmark$		
			$V = 52.6 \text{ m}^3 \text{ s} \checkmark$		
7.	b		$W \ll P \Delta V \gg = 11.2 \times 10^3 \times (52.7 - 47.1)$		
			$W = 62.7 \times 10^3 \text{ sJ} \text{ s}$	Accept 66.1×10 ³ J if 53 used	2
				Accept 61.6×10^3 J if 52.6 used	
7.	с		$\Delta U \ll = \frac{3}{2} nR \Delta T \gg = 1.5 \times 243 \times 8.31 \times (19 - (-12)) = 9.39 \times 10^4 \checkmark$		
			$Q \ll \Delta U + W \gg = 9.39 \times 10^4 + 6.27 \times 10^4 \checkmark$	Accept 1.60×10^5 if 66.1×10^3 J used	2
				Accept 1.55×10^5 if 61.6×10^3 J used	3
			$Q = 1.57 \times 10^5 \text{ «J» } \checkmark$		

(Question 7 continued)

Question		on	Answers	Notes	Total
7.	d	i	concave curve from RHS of present line to point above LHS of present line \checkmark		
			vertical line from previous curve to the beginning \checkmark	p^{\uparrow}	
					2
7.	d	ii	energy is removed from the gas and so entropy decreases	OWTTE	
			OR		1
			temperature decreases «at constant volume (less disorder)» so entropy decreases ✓		
7.	е		different paradigms/ways of thinking/modelling/views ✓	OWTTE	
			allows testing in different ways 🗸		1 max
			laws can be applied different situations \checkmark		

Option C — Imaging

G	Questi	on	Answers	Notes	Total
8.	a	i	constructs ray parallel to principal axis and then to image position <i>OR</i> u=8cm and v=24cm and lens formula ✓ 6 «cm» ✓	eg:	2
8.	а	ii	<i>m</i> =«-»3.0 ✓		1
8.	b		 completes diagram with blue focal point closer to lens ✓ blue light/rays refracted/deviated more OR speed of blue light is less than speed of red light ✓ OR different colors/wavelengths have different focal points/converge at different points ✓ 	First marking point can be explained in words or seen on diagram	2

Q	Question		Answers	Notes	Total
9.	а		where the extensions of the reflected rays from the primary mirror would meet, with construction lines ✓	eg:	1
9.	b		greater magnification 🗸		1
9.	C		Newtonian mount has plane/not curved «secondary» mirror ✓ «secondary» mirror at angle/45° to axis ✓ eyepiece at side/at 90° to axis ✓ mount shown is Cassegrain ✓	OWTTE Accept these marking points in diagram form	2 max
9.	d		waves collected above mirror/dish ✓ waves collected at the focus of the mirror/dish ✓ waves detected by radio receiver/antenna ✓ waves converted to electrical signals ✓		1 max

Q	uesti	on	Answers	Notes	Total
10.	а		$sinc = \frac{1.4444}{1.4475} \text{ or } sinc = 0.9978 \checkmark$ critical angle = 86.2«°» \checkmark with cladding only rays travelling nearly parallel to fibre axis are transmitted OR pulse broadening/dispersion will be reduced \checkmark	OWTTE	3
10.	b	i	attenuation = «10 log $\frac{I}{I_0}$ » = 10 log $\frac{2.0 \times 10^{-6}}{400 \times 10^{-6}}$ \checkmark attenuation = «-»23 «dB» \checkmark	Accept 10 log $\frac{400}{2.0}$ for first marking point	2
10.	b	ii	$185 \times 0.200 = 37 \text{ loss over length of cable } \checkmark$ $\ll \frac{37 - 23}{12} = 1.17 \text{ wso two amplifiers are sufficient } \checkmark$		2
10.	b	111	mention of material dispersion ✓ mention that rays become separated in time <i>OR</i> mention that ray A travels slower/arrives later than ray B ✓		2

(Question 10 continued)

Question		on	Answers	Notes	Total
10.	C	<u></u>	high bandwidth/data transfer rates ✓ low distortion/Low noise/Faithful reproduction ✓ high security ✓ fast «fibre» broadband/internet ✓ high quality optical audio ✓	Allow any other verifiable sensible advantage	1 max
			medical endoscopy 🗸		

Option D — Astrophysics

Question		on	Answers	Notes	Total
11.	a		photon/fusion/radiation force/pressure balances gravitational force/pressure ✓ gives both directions correctly (outwards radiation, inwards gravity) ✓	OWTTE	2
11.	b		« $L \propto M^{3.5}$ for main sequence» luminosity of $P = 2.5$ «luminosity of the Sun» \checkmark		1
11.	С	i	$L_{Gacrux} = 5.67 \times 10^{-8} \times 4\pi \times (58.5 \times 10^{9})^{2} \times 3600^{4} \checkmark$ $L_{Gacrux} = 4.1 \times 10^{29} \text{ W} \text{ W} \checkmark$ $\frac{L_{Gacrux}}{L_{\odot}} = \frac{4.1 \times 10^{29}}{3.85 \times 10^{26}} = 1.1 \times 10^{3} \checkmark$		3
11.	C	ii	if the star is too far then the parallax angle is too small to be measured OR stellar parallax is limited to closer stars ✓	OWTTE	1

Question		on	Answers	Notes	Total
11.	d	i	line or area roughly inside shape shown – judge by eye ✓	Accept straight line or straight area at roughly 45° $ \begin{array}{c} 10^{\circ} \\ 10^{\circ$	1
11.	d	ii	P between $1L_{\odot}$ and $10^{1}L_{\odot}$ on main sequence drawn \checkmark		1

(Question 11 continued)

Question		on	Answers	Notes	Total
11.	d	111	at $10^3 L_{\odot}$, further to right than 5000 K and to the left of 2500 K (see shaded region) \checkmark	luminosity / L _a 10 ⁴ 10 ⁴	1

(Question 11 continued)

Question		on	Answers	Notes	Total
11.	е		ALTERNATIVE 1		
			Main sequence to red giant 🗸		
			planetary nebula with mass reduction/loss		
			OR	OWTTE for both alternatives	
			planetary nebula with mention of remnant mass \checkmark		
			white dwarf 🗸		
			ALTERNATIVE 2		
			Main sequence to red supergiant region \checkmark		3
			Supernova with mass reduction/loss		
			OR		
			Supernova with mention of remnant mass \checkmark		
			neutron star		
			OR		
			Black hole 🗸		

Question		on	Answers	Notes	Total
12.	а		use of gradient or any coordinate pair to find $H_0 \ll \frac{v}{d}$ or $\frac{1}{H_0} \ll \frac{d}{v} \ll 4$	Allow final answers between 3.7×10^{17} and 3.9×10^{17} «s» or 4×10^{17} «s»	
			convert Mpc to m and km to m «for example $\frac{82 \times 10^3}{10^6 \times 3.26 \times 9.46 \times 10^{15}}$ » \checkmark		
			age of universe $\ll \frac{1}{H_0} \approx 3.8 \times 10^{17} \ll s \approx \checkmark$		3
12.	b		non-accelerated/uniform rate of expansion	OWTTE	
			OR		1
			$H_{_0}$ constant over time \checkmark		
12.	с		$z \ll \frac{v}{c} \gg \frac{4.6 \times 10^4 \times 10^3}{3.00 \times 10^8} = 0.15 $		
			$\frac{R}{R_0} = \ll z + 1 \gg = 1.15 \checkmark$		2
			$\frac{R_0}{R} = \ll \frac{1}{1.15} = \approx 0.87$		3
			OR		
			87 % of the present size \checkmark		